A Geometric Model for Hochschild Homology of Soergel Bimodules

نویسنده

  • GEORDIE WILLIAMSON
چکیده

An important step in the calculation of the triply graded link theory of Khovanov and Rozansky is the determination of the Hochschild homology of Soergel bimodules for SL(n). We present a geometric model for this Hochschild homology for any simple group G, as equivariant intersection homology of B × Borbit closures in G. We show that, in type A these orbit closures are equivariantly formal for the conjugation T -action. We use this fact to show that in the case where the corresponding orbit closure is smooth, this Hochschild homology is an exterior algebra over a polynomial ring on generators whose degree is explicitly determined by the geometry of the orbit closure, and describe its Hilbert series, proving a conjecture of Jacob Rasmussen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hochschild homology of certain Soergel bimodules

The Soergel bimodules were introduced by Soergel in [9, 10] in the context of the infinite-dimensional representation theory of simple Lie algebra and Kazhdan-Lusztig theory. They have nice explicit expression as the tensor products of the rings of polynomials invariant under the action of a symmetric group, tensored over rings of the same form. Moreover, there are various quite different inter...

متن کامل

Triply-graded link homology and Hochschild homology of Soergel bimodules

We trade matrix factorizations and Koszul complexes for Hochschild homology of Soergel bimodules to modify the construction of triplygraded link homology and relate it to Kazhdan-Lusztig theory. Hochschild homology. Let R be a k-algebra, where k is a field, R = R ⊗k R op be the enveloping algebra of R, and M be an R-bimodule (equivalently, a left R-module). The functor of R-coinvariants associa...

متن کامل

A geometric construction of colored HOMFLYPT homology

The aim of this paper is two-fold. First, we give a fully geometric description of the HOMFLYPT homology of Khovanov-Rozansky. Our method is to construct this invariant in terms of the cohomology of various sheaves on certain algebraic groups, in the same spirit as the authors’ previous work on Soergel bimodules. All the differentials and gradings which appear in the construction of HOMFLYPT ho...

متن کامل

Simple Transitive 2-Representations of Soergel Bimodules in Type B2

We prove that every simple transitive 2-representation of the fiat 2-category of Soergel bimodules (over the coinvariant algebra) in type B2 is equivalent to a cell 2-representation. We also describe some general properties of the 2-category of Soergel bimodules for arbitrary finite Dihedral groups.

متن کامل

Integral HOMFLY-PT and sl(n)-Link Homology

Using the diagrammatic calculus for Soergel bimodules, developed by Elias and Khovanov, as well as Rasmussen's spectral sequence, we construct an integral version of HOMFLY-PT and sln-link homology.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007